

Customer			
Part name	Ni-MH Battery		
Model No	Ni-MH AA900mAh 1.2V		
Serial No			
Produce No			
Approved by		Drafted by	Wenfei liang
Checked by		Signed by	Xiaojun nie
Prepared by		Valid Date	2018-08-29

1. SCOPE

This specification governs the performance of the following pkcell Nickel-Metal Hydride Cylindrical Cell and its stack-up batteries.

pkcell Model: Ni-MH AA900mAh 1.2V

The data involving nominal voltage and the approximate weight of stake-up batteries shall be equal to the value of the unit cell multiplied by the number of unit cells in the battery.

Nominal voltage of unit cell = 1.2V

2. RATINGS

Description	Unit	Specification	Conditions	
Nominal Voltage	V	1.2V		
Nominal Capacity	mAh	900	Standard Charge/discharge	
Minimum Capacity	mAh	855	Standard Charge/discharge	
Standard Charge	mA	90(0.1C)	T0- 45°C	
	hour	14-16	Ta=0∼45°C	
	mA	450(0.5C)	-ΔV=5~10mV/pcs Timercutoff=110%input	
Fast Charge	hour	2.2approx	capacity $^{-2}$ - Temp.cutoff=55°C Ta=10~45°C	
Trickle Charge	mA	45(0.05C) ~ 90(0.1C)	Та=0∼45 ℃	
Discharge Cut-off Voltage	V	1.0	Ta=-20∼55℃	
Maximum Discharging Current	mA	1800 (2C)	Ta=10∼45℃	
Storage Temperature	°C	-20~35°C	Discharge state	

3. PERFORMANCE

Unless otherwise stated, tests should be done within one month of delivery under the following

conditions:

Ambient Temperature: Ta= 20 ± 5 °C Relative Humidity: $65\pm20\%$ Standard Charge/ Discharge Condition:

Charge: 90mA(0.1C)×16hrs Discharge: 180mA(0.2C) to 1.0V/ cell

Table 1

Test	Unit	Specification	Conditions	Remarks
Capacity(0.2C)	min	≥290	Standard Charge/Discharge	Up to 3 cycles are allowed
Open Circuit Voltage (OCV)	V	≥1.25	Within 1hr after standard charge	
Internal Impedance (Ri)	mΩ	≤40	Upon fully charge(1kHz) (1kHz)	
High Rate Discharge (0.5C)	min	≥108	Standard Charge,1hr rest before discharge	
High Rate Discharge (1C)	min	≥54	Standard Charge, 1hr rest before discharge	
Overcharge	N/A	No leakage nor explosion	90mA(0.1C) charge 48 hours	
Charge Retention	mAh	≥630(70%)	Standard Charge, Storage: 7 days at 45°C,0.2C Standard Discharge	- 3 -
IEC Cycles Test	Cycle	≥500	IEC61951-2 (2003)	

Table 2

Table 2			
Test	Unit	Specification	Conditions
Laskaga	N/A	No leakage nor	Full charged at (0.1C) stand for 14
Leakage	1N/A	deformation.	days
Short		Leakage & deformation	After standard charge, short circuit
Circuit	N/A	may occur, but no	for 1 hour(leading
Circuit		explosion is allowed.	wire=0.75mm ² ×20mm)
			Charge the battery 0.1C 16hrs,the
		Change of voltage	n leave for 24hrs. check battery b
Vibration	N/A	$\Delta V < 0.02 V$,	efore / after vibration.
Resistance	1N/A	Change of internal	Amplitude:1.5mm
		Impedance $\Delta Ri < 5 m\Omega$.	Vibration:3000CPM
			Any direction for 60mins.
		Change of voltage	Charge the battery 0.1C
Impact	N/A	$\Delta V < 0.02 V$,	16hrs, then leave for 24hrs.
Resistance	1 1/ 1 1	Change of internal	(check battery before / after)

Impedance $\Delta Ri < 5 m\Omega$.	dropped, Height:50cm,Wooden board(thickness
	30mm)Direction not specified 3
	times.

4. CONFIGURATION, DIMENSIONS AND MARKINGS

Please refer to the attached drawing.

5. EXTERNAL APPEARANCE

The cell/ battery shall be free from cracks, scars, breakage, rust, Discoloration, leakage nor deformation.

6, CAUTION

- ◆.Reverse charging is not acceptable
- ◆.Do not burthen current when charging.
- ◆.Do not charge/discharge with more than the specified current.

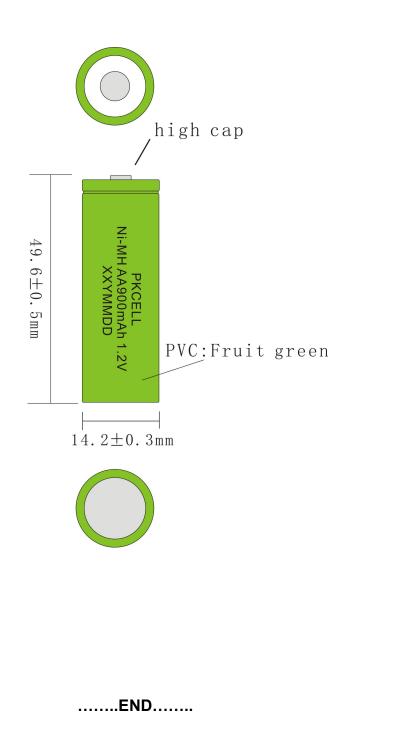
•.Do not short circuit the cell/ battery. Permanent damage to the cell/ battery may result.

 \blacklozenge . Do not incinerate or mutilate the cell/battery.

◆.Do not subject batteries to adverse conditions like: extreme temperature, deep cycling and excessive Overcharge/overdischarge.The life expectancy may be reduced.

◆.Store the cell/ battery in a cool dry place. Always discharge the cell/battery before bulk storage or shipment.

◆. Cycle(charge and discharge) the battery every 6-9months to maintain cell/battery performance when being stored for an extended period of time.


◆.Keep away from children. If swallowed, contact a physician at once.

◆. Avoid airtight battery compartments. Ventilation should be provided in the plastic case of batteries, otherwise oxygen and hydrogen gas generated inside can cause explosion when exposed to fire sources such as motors or switches.

- 4 -

7. Dimensions of the battery:

- 5 -